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Abstract

An assessment of two-equation turbulence models, the low Reynolds k-ε and k-ω SST models, with the compressibility 

corrections proposed by Sarkar and Wilcox, has been performed. The compressibility models are evaluated by investigating 

transonic or supersonic flows, including the arc-bump, transonic diffuser, supersonic jet impingement, and unsteady 

supersonic diffuser. A unified implicit finite volume scheme, consisting of mass, momentum, and energy conservation 

equations, is used, and the results are compared with experimental data. The model accuracy is found to depend strongly on 

the flow separation behavior. An MPI (Message Passing Interface) parallel computing scheme is implemented.
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1. Introduction

Supersonic propulsion systems have applications for a 

wide variety of aircraft and rockets, operating at flow regimes 

from subsonic to supersonic. A variety of flow devices for the 

vehicles operate at a wide range of Mach numbers, so that 

shock / boundary layer interactions are common, and may 

have a significant influence on the entire flow field [1-5]. 

At high Reynolds numbers, flows are very likely to be fully 

turbulent. With increasing turbulence Mach number, the 

velocity fields can no longer be assumed to be incompressible. 

For the transonic and supersonic flow regimes, the shock 

/ boundary layer interaction causes a large increase in 

turbulence intensity and shear stress. Turbulence modeling 

for compressible flow has to account for the additional 

correlations, involving both the fluctuating thermodynamic 

quantities, and the fluctuating dilatation. To account for 

the important flow features at transonic and supersonic 

conditions, the combined models of compressible-dissipation 

and pressure-dilatation proposed by Sarkar and Wilcox [6-9] 

were evaluated in this study.

In smooth flow regions with continuous flow variables, 

the central-differencing schemes based on the Taylor series 

expansion can be applied, with a certain order of accuracy. 

In the supersonic regime with discontinuities such as shock 

waves, however, the scheme becomes numerically unstable. 

To avoid such non-physical oscillation, the concept of total 

variation diminishing (TVD) and the AUSMPW+ scheme 

were used for the inviscid flux calculation, as the upwind 

schemes [10].

For this study, two-equation turbulence models, low 

Reynolds k-ε and k-ω SST models, with and without 

compressible dissipation and pressure-dilatation corrections, 

are used to evaluate the compressibility effects of turbulent 

models in transonic and supersonic flows involving flow 

separation. The four test cases are a 7% arc-bump [11, 12], 

transonic diffuser [13, 14], the supersonic impinging jet [15], 

and the supersonic diffuser [16, 17]. 

2. Numerical Method

2.1 Governing Equation

The Favre-averaged governing equations for a compressible 

flow, based on the conservation of mass, momentum, energy, 
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and species, can be expressed as:
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where, superscript “ ” represents time averaged quantity, and superscript “  ” means mass 

weighted averaged quantity. , u, p, ij , qj , E  represent density, velocity, pressure, stress tensor, heat 

flux vector, and specific total internal energy, respectively. , ,jt x   are time, space coordinate, and 

kronecker delta, respectively. Subscripts i and j represent space coordinates or tensor indices. 

 

2.2 Turbulent Models 

The turbulent models considered for this study are two-equation turbulence models, such as the 

low-Reynolds number k-ε model, and k-ω SST model. 

The standard k-ε model was proposed for high Reynolds number turbulence flows, and is 

traditionally used with a wall function, and the variable y+ as a damping function. However, universal 

wall functions do not exist in complex flows, so the damping factor cannot be perfectly applied to the 

flow with separation. Thus, a low Reynolds number k-ε model was developed, to take account of 

near-wall turbulence. Shih and Lumley observed that, within certain distances from the wall, all 

energetic large eddies will reduce to Kolmogorov eddies; and all the important wall parameters, such 

as friction velocity, viscous length scale, and mean strain rate at the wall, can be characterized by the 

Kolmogorov micro scale [18]. 

Yang and Shih proposed a time-scale-based k-ε model for the near-wall turbulence, related to the 

Kolmogorov time scale as its lower bound, so that the equation can be integrated to the wall. The 

advantages of this model are the lack of a singularity at the wall, and adaptability to separated flow, 
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where, superscript “-” represents time averaged quantity,  

and superscript “~” means mass weighted averaged 

quantity. ρ, u, p, τij, qj, E represent density, velocity, pressure, 

stress tensor, heat flux vector, and specific total internal 

energy, respectively. t, xj, δ are time, space coordinate, and 

kronecker delta, respectively. Subscripts i and j represent 

space coordinates or tensor indices.
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equation turbulence models, such as the low-Reynolds 

number k-ε model, and k-ω SST model.

The standard k-ε model was proposed for high Reynolds 

number turbulence flows, and is traditionally used with a 

wall function, and the variable y+ as a damping function. 

However, universal wall functions do not exist in complex 

flows, so the damping factor cannot be perfectly applied 

to the flow with separation. Thus, a low Reynolds number 

k-ε model was developed, to take account of near-wall 

turbulence. Shih and Lumley observed that, within certain 

distances from the wall, all energetic large eddies will 

reduce to Kolmogorov eddies; and all the important wall 

parameters, such as friction velocity, viscous length scale, 

and mean strain rate at the wall, can be characterized by the 

Kolmogorov micro scale [18].

Yang and Shih proposed a time-scale-based k-ε model 

for the near-wall turbulence, related to the Kolmogorov 

time scale as its lower bound, so that the equation can be 

integrated to the wall. The advantages of this model are the 

lack of a singularity at the wall, and adaptability to separated 

flow, since the damping function is based on the Reynolds 

number, instead of y+. The low Reynolds number models 

have been designed to maintain the high Reynolds number 

formulation in the log-law region, and further tuned to fit 

measurements for the viscous and buffer layers [19].

The turbulent kinetic energy and its dissipation rate are 

calculated from the turbulence transport equations, written 

as follows:
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where, k is the Kolmogorov time scale. 
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Mach number, Mt, defined by
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where, 2C is a closure coefficient. Only the dissipation terms are shown explicitly in Equations 

(21) and (22), since no changes occur in any other terms. The equation for s is unaffected by 

compressibility. The dilatation dissipation is further assumed to be proportional to s , so that  
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further assumed to be proportional to εs, so that 
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The pressure-dilatation is large, in flows with a large 
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where, tM  is the turbulence Mach number, and the closure coefficients 2 and 3 are given by 
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where, 0 ** f  and 0 f  are the corresponding incompressible values of * and  [10]. 

 

2.4 Discretization Method 

The concept of total variation diminishing (TVD), the first of the upwind schemes applied in this 

study, is that the total variation of any of the physical properties does not increase in time. Temporal 

discretization is obtained, using a second order dual time stepping integration. The spatial convective 

terms are discretized with the third-order upwind TVD scheme [6]. 

In order to avoid such non-physical oscillation, the AUSMPW+ scheme was chosen for the inviscid 

flux calculation. In previous research, the AUSMPW+ scheme has been known to be more stable, and 

at the same time less dissipative in supersonic flow, than the Roe scheme. The AUSMPW+ scheme is 

a modified version of the AUSM (Advection Upstream Splitting Method) family of schemes. The 

AUSM concept is to use different splitting for the convective fluxes, with each splitting being some 

function of an intuitively defined interface Mach number. The AUSMPW scheme with pressure-based 

weight function was introduced to overcome the carbuncle phenomenon, and the overshoot problems 

behind a strong shock, in the AUSM or AUSMD scheme. The AUSMPW+ scheme is an improved 

and simplified version of the AUSMPW scheme, with a new numerical speed of sound introduced 

[21]. 

 

2.5 Numerical scheme 

The conservation equations for moderate and high Mach number flows are well-coupled, and 

standard numerical techniques perform adequately. In regions of low Mach number flows, however, 

the energy and momentum equations are practically decoupled, and the system of conservation 

equations becomes stiff. To overcome this problem, a two-step dual time-integration procedure 

designed for all Mach number flows was applied. First, a rescaled pressure term is used in the 

momentum equation, in order to circumvent the singular behavior of pressure at low Mach numbers. 

Second, a dual time-stepping integration procedure is established. 

 and 
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where, tM  is the turbulence Mach number, and the closure coefficients 2 and 3 are given by 
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 and β[10].

2.4 Discretization Method

The concept of total variation diminishing (TVD), the first 

of the upwind schemes applied in this study, is that the total 

variation of any of the physical properties does not increase 

in time. Temporal discretization is obtained, using a second 

order dual time stepping integration. The spatial convective 

terms are discretized with the third-order upwind TVD 

scheme [6].

In order to avoid such non-physical oscillation, the 

AUSMPW+ scheme was chosen for the inviscid flux 

calculation. In previous research, the AUSMPW+ scheme 

has been known to be more stable, and at the same time 

less dissipative in supersonic flow, than the Roe scheme. 

The AUSMPW+ scheme is a modified version of the AUSM 

(Advection Upstream Splitting Method) family of schemes. 

The AUSM concept is to use different splitting for the 

convective fluxes, with each splitting being some function 

of an intuitively defined interface Mach number. The 

AUSMPW scheme with pressure-based weight function was 

introduced to overcome the carbuncle phenomenon, and 

the overshoot problems behind a strong shock, in the AUSM 

or AUSMD scheme. The AUSMPW+ scheme is an improved 

and simplified version of the AUSMPW scheme, with a new 

numerical speed of sound introduced [21].

2.5 Numerical scheme

The conservation equations for moderate and high Mach 

number flows are well-coupled, and standard numerical 

techniques perform adequately. In regions of low Mach 

number flows, however, the energy and momentum 

equations are practically decoupled, and the system of 

conservation equations becomes stiff. To overcome this 

problem, a two-step dual time-integration procedure 

designed for all Mach number flows was applied. First, a 

rescaled pressure term is used in the momentum equation, 

in order to circumvent the singular behavior of pressure 

at low Mach numbers. Second, a dual time-stepping 

integration procedure is established.

The pseudo-time derivative may be chosen, in order to 

optimize the convergence of the inner iterations, by using an 

appropriate preconditioning matrix that is tuned to rescale 

the eigenvalues to render the same order of magnitude, so 

as to maximize convergence. To unify the conserved flux 

variables, a pseudo-time derivative of the form 
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render the same order of magnitude, so as to maximize convergence. To unify the conserved flux 

variables, a pseudo-time derivative of the form /Z   can be added to the conservation equation. 

Since the pseudo-time derivative term disappears upon convergence, a certain amount of liberty can 

be taken, in choosing the variable Z. In this study, a pressure, p , is introduced as the pseudo-time 

derivative term in the continuity equation [22]. 

A multi-block feature using an MPI library was used to speed up the calculation [22]. 
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12] considers a channel with a flat floor wall, and an upper surface with a bump, which has a circular 
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of about 0.1, occurs behind the normal shock.  
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correction. The predictions upstream of the normal shock are in good agreement with the 

experimental data, for all turbulence test models. In the separation region, however, several of the test 

models vary somewhat from the experimental data. 
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edge of the arc bump (x=0), due to variation of the flow 

path area. The normal shock is located at about 70% of the 

arc bump, with the Mach number being about 1.3. The 

separation region, which has a low Mach number of about 

0.1, occurs behind the normal shock. 

Figure 3 shows the variation of the pressure coefficient Cp   

along the upper wall, for the experimental data of Inger and 

Gendt [11], and the k-ε and k-ω models with and without the 

Sarkar correction. The predictions upstream of the normal 

shock are in good agreement with the experimental data, 

for all turbulence test models. In the separation region, 

however, several of the test models vary somewhat from the 

experimental data.

The k-ω SST model predicts most closely the normal 

shock location, but the pressure recovers slowly after the 

shockwave. The compressibility effect, the Sarkar model, 

does not much effect the normal shock location and overall 

tendency of Cp. Note particularly that the k-ω SST with the 

Sarkar model predicts the normal shock location better 

than the low Reynolds k-ε model. The k-ε model without 

any compressibility correction predicts the normal shock 

location relatively upstream, but shows better pressure 

recovery after the shock.

Figure 4 shows a comparison of two different 

compressibility correction models, the Sarkar and Wilcox 

models. The Sarkar model considers only the local turbulent 

Mach number, while the Wilcox model uses both the 

standard turbulent Mach number, and the local turbulent 

Mach number, to consider the dilatation dissipation. The 

result for the low Reynolds k-ε model using the Wilcox 

compressibility correction model presents better shock 

location and pressure recovery, than others. 

Based on these results, the low Reynolds k-ε model with 

Wilcox compressibility correction is seen to most accurately 

predict the experimental data.

3.2 Transonic-diffuser

Two-dimensional simulation of the convergent / 

divergent diffuser described experimentally by Borger [13] 

has been conducted. The bottom wall of the diffuser is flat, 

but the upper wall is given by
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The various constants for the top wall are given in Table 1. The throat height is 4.4thh cm . 

Figure 6 shows the geometry and grid distribution of the 100×70 grid points used in this study. At 

the inflow boundary, the stagnation pressure is 135kPa , and the stagnation temperature is 277.8 K  

[13, 14].  

Table 1. Constants for channel height [15] 
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The throat height is hth=4.4cm.
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the stagnation pressure is 135kpa, and the stagnation 

temperature is 277.8oK[13, 14]. 

The pressure ratio, defined as the static pressure at the 

outlet, divided by the inlet total pressure, characterizes the 

diffuser flow. The weak shock and the strong shock in the 

diffuser are simulated. The pressure ratios of the weak shock 

and the strong shock are 0.82 and 0.72, respectively. 

Figure 6 shows the flow structure of the diffuser for 

strong-shock and weak-shock conditions. In the weak-

shock condition, the normal shock is located at around X/

hs=1.5, with a Mach number of 1.2, and the separation region 

appears behind the normal shock, on the top side of the 

diffuser. On the other hand, in the strong-shock condition, 

the normal shock is located at around X/hs=2.0, with a Mach 

number of 1.4, and a larger separation region is observed

Figure 7 shows a comparison of the pressure ratio along 

the top and bottom walls of the diffuser, for the weak-shock 

condition. Both the low Reynolds number k-ε model, and the 

k-ω SST model, give accurate results. The differences in the 

results using the Sarkar and Wilcox compressibility models 

are so small, that the numerical data using the Wilcox 

compressibility model is not presented.

To investigate the effects of the size of recirculation 

and shock strength, the strong-shock condition has been 

investigated. In the strong-shock condition, the separation 

region is larger, and the shock is much stronger, than in the 

weak-shock condition. Figure 8 shows a comparison of the 

pressure ratio for the strong-shock condition. The k-ω SST 

model predicts the normal shock location better than the low 

Reynolds k-ε model does. The low Reynolds k-ε model with 

the Sarkar correction predicts the normal shock location 

more accurately, but not as well as the k-ω model.

On the bottom wall, the separation region is smaller, than 

on the top side of the diffuser. The results on the bottom wall 

behind the normal shock are more accurate, than those on 

the top wall. 
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pressure ratios of the weak shock and the strong shock are 0.82 and 0.72, respectively.  

Figure 7 shows the flow structure of the diffuser for strong-shock and weak-shock conditions. In 

the weak-shock condition, the normal shock is located at around / 1.5sX h  , with a Mach number of 

1.2, and the separation region appears behind the normal shock, on the top side of the diffuser. On the 

other hand, in the strong-shock condition, the normal shock is located at around / 2.0sX h  , with a 

Mach number of 1.4, and a larger separation region is observed 

 

 
(a) Weak-shock condition 

 

 

                                                  (a) Weak-shock condition                                                                              (b) Strong-shock condition 

Fig. 6. Mach number contours in a diffuser, for weak-and strong-shock conditions.
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(b) Strong-shock condition 

 
Fig. 7. Mach number contours in a diffuser, for weak-and strong-shock conditions. 

 

Figure 8 shows a comparison of the pressure ratio along the top and bottom walls of the diffuser, 

for the weak-shock condition. Both the low Reynolds number k-ε model, and the k-ω SST model, give 

accurate results. The differences in the results using the Sarkar and Wilcox compressibility models are 

so small, that the numerical data using the Wilcox compressibility model is not presented. 

 

 

(a) Top wall pressure distribution           (b) Bottom wall pressure distribution 

Fig. 8. Comparison of pressure ratios along diffuser top and bottom walls, for weak-shock condition. 

 

To investigate the effects of the size of recirculation and shock strength, the strong-shock condition 

has been investigated. In the strong-shock condition, the separation region is larger, and the shock is 

much stronger, than in the weak-shock condition. Figure 9 shows a comparison of the pressure ratio 

for the strong-shock condition. The k-ω SST model predicts the normal shock location better than the 

low Reynolds k-ε model does. The low Reynolds k-ε model with the Sarkar correction predicts the 

normal shock location more accurately, but not as well as the k-ω model. 

 

                                                               (a) Top wall pressure distribution                                   (b) Bottom wall pressure distribution

Fig. 7. Comparison of pressure ratios along diffuser top and bottom walls, for weak-shock condition.



393

Hong-Gye Sung    On the Assessment of Compressibility Effects of Two-Equation Turbulence Models for Supersonic Transition ...

http://ijass.org

These results show that both two-equation turbulence 

models have accurate results in the small separation region, 

but for strong shock condition, the k-ω SST model predicts 

the shock position better than the low Reynolds k-ε model. 

The compressibility effects on the k-ω SST model are 

negligible.

3.3 Supersonic jet impingement

To investigate the compressibility effect, a numerical study 

of a supersonic jet impinging on an axi-symmetric cone has 

been conducted.

The designed Mach number of the nozzle exit is 2.0, 

and the mean ratios of nozzle exit pressure to atmospheric 

pressure (PR) are 1.2 and 2.27. The inlet conditions at 

PR=1.2 and 2.27 are a total pressure of 921kPa, and 1,742kPa, 

respectively, and the total temperature is 300K for both cases 

[15]. The apex angle of the cone is 90˚, and the distance 

between the nozzle exit and the apex point is Zn of 13mm, 

and Zn/De=1.0(Fig. 9 (a)).

Figure 9 (b) shows the axisymmetric computational 

domain with a grid system. The total number of grid points is 

about 15,520. Three blocks and six processors are applied, to 

improve the calculation efficiency. 

Figure 10 shows the density gradient magnitude, and the 

Mach number contours. The maximum Mach numbers are 

about 2.6, in the case of PR=1.2, and about 3.2, in the case of 

PR=2.27. 

The impinging jet flow generates an expansion wave at the 

nozzle exit, jet boundary, barrel shock, and Mach disk. Due 

to the impingement on the apex of the cone, the structure of 

the jet flow becomes more complex. In PR=1.2, the subsonic 
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(a) Top wall pressure distribution           (b) Bottom wall pressure distribution 

Fig. 9. Pressure ratio variation on the top and bottom walls, at strong shock condition. 

 

On the bottom wall, the separation region is smaller, than on the top side of the diffuser. The results 

on the bottom wall behind the normal shock are more accurate, than those on the top wall.  

These results show that both two-equation turbulence models have accurate results in the small 

separation region, but for strong shock condition, the k-ω SST model predicts the shock position 

better than the low Reynolds k-ε model. The compressibility effects on the k-ω SST model are 

negligible. 
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Figure 10 (b) shows the axisymmetric computational domain with a grid system. The total number 

of grid points is about 15,520. Three blocks and six processors are applied, to improve the calculation 
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Fig. 8. Pressure ratio variation on the top and bottom walls, at strong shock condition.
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efficiency.  

 

 
 
        (a) a schematic view                    (b) the computational domain with grid system 

 
Fig. 10. Schematics and computational domain of the supersonic nozzle and axi-symmetric cone [15] 

 
Figure 11 shows the density gradient magnitude, and the Mach number contours. The maximum 

Mach numbers are about 2.6, in the case of PR=1.2, and about 3.2, in the case of PR=2.27.  

The impinging jet flow generates an expansion wave at the nozzle exit, jet boundary, barrel shock, 

and Mach disk. Due to the impingement on the apex of the cone, the structure of the jet flow becomes 

more complex. In PR=1.2, the subsonic zone is near the apex of the cone, because the Mach disk is in 

front of the apex of the cone. The Mach disk rapidly reduces the jet velocity to subsonic. The jet flow 

through the Mach disk attaches to the surface of the cone, and is recompressed. The pressure recovery 

at the second compression is more gradual than PR=2.27, as shown in Fig. 12. This means that the 

degree of the compressibility and the interaction of the shock wave with a turbulent boundary is 

weaker, than the case of PR=2.27. In PR=2.27, the jet flow core impinges to the apex of the cone, and 

a stagnation point occurs. The oblique shock at the cone apex closes to the cone wall, and the pressure 

at the second compression increases more steeply.  

 

                                                                               (a) a schematic view                                (b) the computational domain with grid system

Fig. 9. Schematics and computational domain of the supersonic nozzle and axi-symmetric cone [15]
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zone is near the apex of the cone, because the Mach disk is in 

front of the apex of the cone. The Mach disk rapidly reduces 

the jet velocity to subsonic. The jet flow through the Mach 

disk attaches to the surface of the cone, and is recompressed. 

The pressure recovery at the second compression is more 

gradual than PR=2.27, as shown in Fig. 10. This means that 

the degree of the compressibility and the interaction of the 

shock wave with a turbulent boundary is weaker, than the 

case of PR=2.27. In PR=2.27, the jet flow core impinges to the 

apex of the cone, and a stagnation point occurs. The oblique 

shock at the cone apex closes to the cone wall, and the 

pressure at the second compression increases more steeply. 

The experimental data and numerical results 

without compressibility correction are comparable. The 

compressibility effects are negligible, because 1) the flow 

separation region at the cone surface is not large, so that 

the interaction between turbulent boundary and jet flow is 

not active, and 2) the compressible wave and perturbations 

due to the impinging on the cone propagate out to the 

atmosphere, but do not bounce back. 

3.4 Supersonic diffuser

To determine the accuracy of the two turbulence models 

and the compressibility models in the supersonic regime, the 

calculation of a supersonic exhaust diffuser configuration 

was conducted. Fig. 12 shows a schematic view, and the 

computational domain of the supersonic diffuser.

The dimensions of the model are diffuser length L of 

260mm, diffuser diameter D of 21 mm, ratio of length to 

diameter of diffuser L/D of 12.38, area ratio of diffuser to 

rocket motor nozzle throat Ad/At of 56.25, and area ratio of 

diffuser exit to rocket motor nozzle throat Ae/At of 35.20. 

The computational domain consists of three blocks, and 

each block grid number is 115 x 50, 79 x 30, and  206 x 79, 

respectively. The boundary condition has the same condition 

as the experiment. At the inlet boundary, the stagnation 

pressure is 50 bar (5MPa), the stagnation temperature is 

300oK, and the pressure of the outlet boundary condition is 

1 atm [16, 17].

Figure 13 shows the Mach number contours in the 
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Fig. 4. Density gradient magnitude (left), and the Mach number (right) contours 

 

The experimental data and numerical results without compressibility correction are comparable. 
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Fig. 5. Pressure ratio along the edge wall of the cone  
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To determine the accuracy of the two turbulence models and the compressibility models in the 
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supersonic diffuser. The maximum Mach number of about 

6.7 appears in the first diamond shock region. A small 

supersonic pocket occurs at the axis of the diffuser, and 

moves periodically downstream and upstream. The reason 

that the shock train accompanying pressure oscillation 

occurs in the diffuser is that the mass flux and momentum 

of the exhaust jet are not enough to block the pressure 

oscillation produced by the acoustic-wave oscillation, in the 

subsonic region behind the terminal shock. The period of 

oscillation may relate to the acoustic mode in the subsonic 

region, after the second shock diamond. Thus, the vacuum-

chamber pressure stays constant, but the pressure along 

the wall oscillates periodically, with a certain amplitude, 

as shown in Fig. 13. If the rocket motor pressure decreases 
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pressure stays constant, but the pressure along the wall oscillates periodically, with a certain 

amplitude, as shown in Fig. 14. If the rocket motor pressure decreases further, the shock train 

becomes weak. 

Figure 15 shows a comparison of the pressure along the wall of the diffuser, according to the 

compressible correction models. The pressure rises behind the impinging point of the jet on the 

diffuser wall, after the pressure decreases in the expansion region. Afterward, the pressure increases 

again during the next compression wave; and then it finally rises to atmospheric pressure, at the exit 

of the diffuser. The results of the k-ω SST model are very different from the experimental data, since 

the k-ω SST model does not predict the oscillatory flow structure, or the strong unsteady motion. 

Using the compressibility model, the Sarkar model produces better results, but it does not compare 

well with the experimental data. The low Reynolds number k-ε model with the Sarkar model is in 

fairly good agreement with the experimental data. Therefore, in the supersonic regime, the 

experimental data and the numerical results, from the low Reynolds k-ε model with the Sarkar model, 

appear to reveal a discrepancy; but the unsteady flow motion in the diffuser is hidden, in the 

background of the instantaneous data. 

 

(a)                                    (b) 

Fig. 6. Comparison of pressure variation along the diffuser wall, according to the compressibility 

model 

 

                                                                                               (a)	                                                                                       (b)

Fig. 14. Comparison of pressure variation along the diffuser wall, according to the compressibility model
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13 shows a schematic view, and the computational domain of the supersonic diffuser. 

 

 

(a) Schematic view 

(b) Computational domain 

Fig. 13. Schematic and computational domain of the supersonic exhaust diffuser 

 

The dimensions of the model are diffuser length L of 260mm, diffuser diameter D of 21 mm, ratio 

of length to diameter of diffuser L/D of 12.38, area ratio of diffuser to rocket motor nozzle throat 

/d tA A  of 56.25, and area ratio of diffuser exit to rocket motor nozzle throat /e tA A  of 35.20. The 

computational domain consists of three blocks, and each block grid number is 115 50 , 79 30 , and 

206 79 , respectively. The boundary condition has the same condition as the experiment. At the inlet 

boundary, the stagnation pressure is 50 bar ( 5MPa ), the stagnation temperature is 300 K , and the 

pressure of the outlet boundary condition is 1 atm [16, 17]. 
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Fig. 12. Schematic and computational domain of the supersonic exhaust diffuser
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Fig. 14. Mach number contours in supersonic diffuser ( 5t ms  ) 

 

Figure 14 shows the Mach number contours in the supersonic diffuser. The maximum Mach 

number of about 6.7 appears in the first diamond shock region. A small supersonic pocket occurs at 

the axis of the diffuser, and moves periodically downstream and upstream. The reason that the shock 

train accompanying pressure oscillation occurs in the diffuser is that the mass flux and momentum of 

the exhaust jet are not enough to block the pressure oscillation produced by the acoustic-wave 

oscillation, in the subsonic region behind the terminal shock. The period of oscillation may relate to 

the acoustic mode in the subsonic region, after the second shock diamond. Thus, the vacuum-chamber 
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further, the shock train becomes weak.

Figure 14 shows a comparison of the pressure along the 

wall of the diffuser, according to the compressible correction 

models. The pressure rises behind the impinging point of 

the jet on the diffuser wall, after the pressure decreases in 

the expansion region. Afterward, the pressure increases 

again during the next compression wave; and then it finally 

rises to atmospheric pressure, at the exit of the diffuser. 

The results of the k-ω SST model are very different from 

the experimental data, since the k-ω SST model does not 

predict the oscillatory flow structure, or the strong unsteady 

motion. Using the compressibility model, the Sarkar model 

produces better results, but it does not compare well with 

the experimental data. The low Reynolds number k-ε model 

with the Sarkar model is in fairly good agreement with the 

experimental data. Therefore, in the supersonic regime, the 

experimental data and the numerical results, from the low 

Reynolds k-ε model with the Sarkar model, appear to reveal 

a discrepancy; but the unsteady flow motion in the diffuser is 

hidden, in the background of the instantaneous data.

Figure 14 (b) shows a comparison of the pressure along the 

wall, using the Sarkar and Wilcox models. The k-ω SST models 

are unreliable with both compressibility models, because the 

k-ω SST model is weak in strong unsteady flow simulation. On 

the other hand, the low Reynolds number k-ε model has more 

accurate results, for this particular unsteady flow.

4. Conclusions

To evaluate numerical modeling of compressibility 

effects, two two-equation turbulence models, the low 

Reynolds number k-ε model and the k-ω SST model, 

with two compressibility models proposed by Sarkar and 

Wilcox, are applied to simulate four different transonic 

or supersonic flows. The numerical results are evaluated 

against experimental data.

For the first validation, a transonic arc bump, the k-ω 

SST model predicts the normal shock location fairly well, 

but the pressure after the shock recovers slowly, and the 

compressibility effects are negligible. The low Reynolds k-ε 

model with the Wilcox compressibility effect presents better 

accuracy. 

For the second validation case, a transonic diffuser, both 

the weak shock and strong shock cases are evaluated. Both 

two-equation turbulence models reasonably predict the 

flow properties for the weak shock condition, but the k-ω 

SST model offers more accurate results for the strong shock 

condition. The compressibility effects on the k-ω SST model 

are negligible.

For the third validation case, a supersonic impinging 

jet, supersonic jets of pressure ratio (PR) 1.2 and 2.27 are 

investigated. Both two-equation turbulence models have 

similar wall pressures, with reasonable accuracy against 

experimental data, because the flow separation size is small, 

and the compressible wave and perturbation due to the 

impinging on the cone smear out to the atmosphere. 

Finally, an unsteady supersonic diffuser was evaluated 

for  the test of the compressibility correction models. The 

low Reynolds k-ε equation with Wilcox compressibility 

model provides the most accurate results for this particular 

unsteady flow.

In summary, compressibility effects on the turbulence 

model are very important in supersonic flow with large flow 

separation, because of the strong interaction between shock 

and boundary layer. The compressibility correction model 

has a stronger influence on the k-ε model, than on the k-ω 

SST model.  
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